
arXiv: astro-ph/0209058
The process of gravitational scattering of planetesimals by a massive protoplanetary embryo is explored theoretically. We propose a method to describe the evolution of the disk surface density, eccentricity, and inclination caused by the embryo-planetesimal interaction. It relies on the analytical treatment of the scattering in two extreme regimes of the planetesimal epicyclic velocities: shear-dominated (dynamically ``cold'') and dispersion-dominated (dynamically ``hot''). In the former, planetesimal scattering can be treated as a deterministic process. In the latter, scattering is mostly weak because of the large relative velocities of interacting bodies. This allows one to use the Fokker-Planck approximation and the two-body approximation to explore the disk evolution. We compare the results obtained by this method with the outcomes of the direct numerical integrations of planetesimal orbits and they agree quite well. In the intermediate velocity regime an approximate treatment of the disk evolution is proposed based on interpolation between the two extreme regimes. We also calculate the rate of embryo's mass growth in an inhomogeneous planetesimal disk and demonstrate that it is in agreement with both the simulations and earlier calculations. Finally we discuss the question of the direction of the embryo-planetesimal interaction in the dispersion-dominated regime and demonstrate that it is repulsive. This means that the embryo always forms a gap in the disk around it, which is in contrast with the results of other authors. The machinery developed here will be applied to realistic protoplanetary systems in future papers.
40 pages, 9 figures, submitted to AJ
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
