
arXiv: astro-ph/0111210
We estimate the rate of collisions between stars and free-floating planets (FFPs) in globular clusters, in particular the collision of FFPs with red giant branch (RGB) stars. Recent dynamical simulations imply that the density of such objects could exceed million per cubic parsec near the cores of rich globular clusters. We show that in these clusters 5-10 per cents of all RGB stars near the core would suffer a collision with a FFP, and that such a collision can spin up the RGB star's envelope by an order of magnitude. In turn, the higher rotation rates may lead to enhanced mass-loss rates on the RGB, which could result in bluer horizontal branch (HB) stars. Hence, it is plausible that the presence of a large population of FFPs in a globular cluster can influence the distribution of stars on the HB of that cluster to a detectable degree.
10 pages, Accepted by ApJ Letters
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
