
I consider the growth of inhomogeneities in a low-density baryonic, vacuum energy-dominated universe in the context of modified Newtonian dynamics (MOND). I first write down a two-field Langrangian-based theory of MOND (non-relativistic), which embodies several assumptions such as constancy of the MOND acceleration parameter, association of a MOND force with peculiar accelerations only, and the deceleration of the Hubble flow as a background field which influences the dynamics of a finite size region. In the context of this theory, the equation for the evolution of spherically symmetric over-densities is non-linear and implies very rapid growth even in a low-density background, particularly at the epoch when the putative cosmological constant begins to dominate the Hubble expansion. Small comoving scales enter the MOND regime earlier than larger scales and therefore evolve to large over-densities sooner. Taking the initial COBE-normalized power spectrum provided by CMBFAST (Seljak & Zeldarriaga 1996), I find that the final power-spectrum resembles that of the standard LCDM universe and thus retains the empirical successes of that model.
revised version includes a Lagrangian-based, non-relativistic theory of modified dynamics; conclusions are unchanged; accepted for publication (ApJ)
large-scale structure of universe, EXTENDED ROTATION CURVES, Astrophysics (astro-ph), UNIVERSE, FOS: Physical sciences, Astrophysics, dark matter, cosmology : theory, COLD DARK-MATTER, gravitation, COSMOLOGY, SPIRAL GALAXIES
large-scale structure of universe, EXTENDED ROTATION CURVES, Astrophysics (astro-ph), UNIVERSE, FOS: Physical sciences, Astrophysics, dark matter, cosmology : theory, COLD DARK-MATTER, gravitation, COSMOLOGY, SPIRAL GALAXIES
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
