<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 1885/94701
We have modeled a large sample of infrared starburst galaxies using both the PEGASE v2.0 and STARBURST99 codes to generate the spectral energy distribution of the young star clusters. PEGASE utilizes the Padova group tracks while STARBURST99 uses the Geneva group tracks, allowing comparison between the two. We used our MAPPINGS III code to compute photoionization models which include a self-consistent treatment of dust physics and chemical depletion. We use the standard optical diagnostic diagrams as indicators of the hardness of the EUV radiation field in these galaxies. These diagnostic diagrams are most sensitive to the spectral index of the ionizing radiation field in the 1-4 Rydberg region. We find that warm infrared starburst galaxies contain a relatively hard EUV field in this region. The PEGASE ionizing stellar continuum is harder in the 1-4 Rydberg range than that of STARBURST99. As the spectrum in this regime is dominated by emission from Wolf-Rayet (W-R) stars, this difference is most likely due to the differences in stellar atmosphere models used for the W-R stars. We believe that the stellar atmospheres in STARBURST99 are more applicable to the starburst galaxies in our sample, however they do not produce the hard EUV field in the 1-4 Rydberg region required by our observations. The inclusion of continuum metal blanketing in the models may be one solution. Supernova remnant (SNR) shock modeling shows that the contribution by mechanical energy from SNRs to the photoionization models is << 20%. The models presented here are used to derive a new theoretical classification scheme for starbursts and AGN galaxies based on the optical diagnostic diagrams.
36 pages, 16 figures, to be published in ApJ, July 20, 2001
Keywords: Color figures, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, Galaxies: starburst, Radiation mechanisms: thermal, 520
Keywords: Color figures, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, Galaxies: starburst, Radiation mechanisms: thermal, 520
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2K | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |