Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2001 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 1999
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Energy of Gamma‐Ray Bursts

Authors: Deborah L. Freedman; Deborah L. Freedman; Eli Waxman;

On the Energy of Gamma‐Ray Bursts

Abstract

We show that gamma-ray burst (GRB) afterglow observations strongly suggest, within the fireball model framework, that radiating electrons are shock accelerated to a power-law energy distribution, with universal index p \approx 2.2, and that the fraction of shock energy carried by electrons, ��_e, is universal and close to equipartition, ��_e ~ 1/3. For universal p and ��_e, a single measurement of the X-ray afterglow flux on the time scale of a day provides a robust estimate of the fireball energy per unit solid angle, ��, averaged over a conical section of the fireball of opening angle ��~ 0.1. Applying our analysis to BeppoSAX afterglow data we find that: (i) Fireball energies are in the range of 4����=10^{51.5} to 10^{53.5} erg; (ii) The ratio of observed $��$-ray to total fireball energy per unit solid angle, ��_��/ ��, is of order unity, satisfying abs[log10(��_��/��)]<0.5; (iii) If fireballs are jet like, their opening angle should satisfy ��>=0.1. Our results imply that if typical opening angles are ��~ 0.1, a value consistent with our analysis, the total energy associated with a GRB event is in the range of 10^{50} erg to 10^{51.5} erg.

16 pages; Submitted to ApJ

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 10%
Top 1%
Top 1%
Green
gold