<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We develop a new method for estimating and removing the spectrum of the sky from deep spectroscopic observations; our method does not rely on simultaneous measurement of the sky spectrum with the object spectrum. The technique is based on the iterative subtraction of continuum estimates and Eigenvector sky models derived from Singular Value Decompositions (SVD) of sky spectra, and sky spectra residuals. Using simulated data derived from small telescope observations we demonstrate that the method is effective for faint objects on large telescopes. We discuss simple methods to combine our new technique with the simultaneous measurement of sky to obtain sky subtraction very near the Poisson limit.
Accepted for publication in The Astrophysical Journal (Letters) 2000 March 7. Includes one extra figure which did not fit in a letter
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |