
We study the spatial distribution of dark matter halos in the Universe in terms of their number density contrast, related to the underlying dark matter fluctuation via a non-local and non-linear bias random field. The description of the matter dynamics is simplified by adopting the `truncated' Zel'dovich approximation to obtain both analytical results and simulated maps. The halo number density field in our maps and its probability distribution reproduce with excellent accuracy those of halos in a high-resolution N-body simulation with the same initial conditions. Our non-linear and non-local bias prescription matches the N-body halo distribution better than any Eulerian linear and local bias.
4 pages, LaTeX (uses emulateapj; included psfig.tex), 3 figures, 1 table. Shortened version, matching the size requirements of ApJ Letters. Accepted for publication
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
