
Halo white dwarfs can provide important information about the properties and evolution of the galactic halo. In this paper we compute, assuming a standard IMF and updated models of white dwarf cooling, the expected luminosity function, both in luminosity and in visual magnitude, for different star formation rates. We show that a deep enough survey (limiting magnitude > 20) could provide important information about the halo age and the duration of the formation stage. We also show that the number of white dwarfs produced using the recently proposed biased IMFs cannot represent a large fraction of the halo dark matter if they are constrained by the presently observed luminosity function. Furthermore, we show that a robust determination of the bright portion of the luminosity function can provide strong constraints on the allowable IMF shapes.
29 pages (AASTeX), 7 eps figures included, accepted for publication in ApJ
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
