Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astronomical Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astronomical Journal
Article . 1999 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 1999
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Extinction Curves, Distances, and Clumpiness of Diffuse Interstellar Dust Clouds

Authors: Szomoru, Arpad; Guhathakurta, Puragra;

Extinction Curves, Distances, and Clumpiness of Diffuse Interstellar Dust Clouds

Abstract

We present CCD photometry in UBVRI of several thousand Galactic field stars in four large (>1 degree^2) regions centered on diffuse interstellar dust clouds, commonly referred to as ``cirrus'' clouds (with optical depth A_V less than unity). Our goal in studying these stars is to investigate the properties of the cirrus clouds. A comparison of the observed stellar surface density between on-cloud and off-cloud regions as a function of apparent magnitude in each of the five bands effectively yields a measure of the extinction through each cloud. For two of the cirrus clouds, this method is used to derive UBVRI star counts-based extinction curves, and U-band counts are used to place constraints on the cloud distance. The color distribution of stars and their location in (U-B, B-V) and (B-V, V-I) color-color space are analyzed in order to determine the amount of selective extinction (reddening) caused by the cirrus. The color excesses, A_lambda-A_V, derived from stellar color histogram offsets for the four clouds, are better fit by a reddening law that rises steeply towards short wavelengths [R_V==A_V/E(B-V)<=2] than by the standard law (R_V=3.1). This may be indicative of a higher-than-average abundance of small dust grains relative to larger grains in diffuse cirrus clouds. The shape of the counts-based effective extinction curve and a comparison of different estimates of the dust optical depth (extinction optical depth derived from background star counts/colors; emission optical depth derived from far infrared measurements), are used to measure the degree of clumpiness in clouds. The set of techniques explored in this paper can be readily adapted to the Sloan Digital Sky Survey data set in order to carry out a systematic, large-scale study of cirrus clouds.

22 pages, 13 figures (postscript, gif, jpg). Accepted for publication in the Astronomical Journal, scheduled for the May 1999 issue. Full resolution postscript versions of all figures are available at http://www.ucolick.org/~arpad/

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Green
gold