
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We discuss the chemical evolution of metal poor galaxies and conclude that their oxygen deficiency is not due to: the production of black holes by massive stars or a varying slope of the Initial Mass Function, IMF, at the high-mass end. A varying IMF at the low-mass end alone or in combination with: (a) an outflow of oxygen-rich material, (b) an outflow of well-mixed material, and (c) the presence of dark matter that does not participate in the chemical evolution process, is needed to explain their oxygen deficiency. Outflow of material rich in oxygen helps to account for the large helium to oxygen mass ratio values derived from these objects, but it works against explaining the carbon to oxygen mass ratio and the heavy elements minus carbon and oxygen to oxygen mass ratio values.
26 pages, plain Tex, a postscript version with the figures included is available at ftp://132.248.1.7/papers/chem_evolution/irr_bcg.tar ; ApJ accepted
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
