Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 1994 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 1994
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 1994
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The motions of clusters and group of galaxies

Authors: Bahcall, Neta A.; Gramann, Mirt; Cen, Renyue;

The motions of clusters and group of galaxies

Abstract

The distributions of peculiar velocities of rich clusters and of groups of galaxies are investigated for different cosmological models and are compared with observations. Four cosmological models are studied: standard ($��=1$) CDM, low-density CDM, HDM ($��=1$), and PBI. We find that rich clusters of galaxies exhibit a Maxwellian distribution of peculiar velocities in all models, as expected from a Gaussian initial density fluctuation field. The cluster 3-D velocity distribution is generally similar in the models: it peaks at $v \sim 500$ km s$^{-1}$, and extends to high cluster velocities of $v \sim 1500$ km s$^{-1}$. Approximately 10\% of all model rich clusters move with high peculiar velocities of $v \ge 10^3$ km s$^{-1}$. The highest velocity clusters frequently originate in dense superclusters. The group velocity distribution is, in general, similar to the velocity distribution of the rich clusters. In all but the low-density CDM model, the mass exhibits a longer tail of high velocities than do the clusters. This high-velocity tail originates mostly from the high velocities that exist within rich clusters. The model velocity distributions of groups and clusters of galaxies are compared with observations. The data are generally consistent with the models, but exhibit a somewhat larger high-velocity tail, to $v_r \sim 3000$ km s$^{-1}$. While this high-velocity tail is similar to the HDM model predictions, the data are consistent with the other models studied, including the low-density CDM model, which best fits most other large-scale structure observations. The observed velocity

25p plaintex submitted to The Astrophysical Journal

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Green
gold