
A thorough study of QSO-galaxy correlations has been done on a region close to the North Galactic Pole using a complete subsample of the optically selected CFHT/MMT QSO survey and the galaxy catalog of Odewahn and Aldering (1995). Although a positive correlation between bright QSOs and galaxies is expected because of the magnification bias effect, none is detected. On the contrary, there is a significant (>99.6%) anticorrelation between z<1.6 QSOs and red galaxies on rather large angular distances. This anticorrelation is much less pronounced for high redshift z>1.6 QSOs, which seems to exclude dust as a cause of the QSO underdensity. This result suggests that the selection process employed in the CFHT/MMT QSO survey is losing up to 50% of low redshift z<1.6 QSOs in regions of high galaxy density. The incompleteness in the whole z<1.6 QSO sample may reach 10% and have important consequences in the estimation of QSO evolution and the QSO autocorrelation function.
17 pages LaTeX (aasms4), plus 6 EPS figures. To be published in the Astronomical Journal
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
