Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Gener...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of General Physiology
Article . 1923 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MEMBRANE POTENTIALS AND CATAPHORETIC POTENTIALS OF PROTEINS

Authors: Jacques Loeb;

MEMBRANE POTENTIALS AND CATAPHORETIC POTENTIALS OF PROTEINS

Abstract

1. It has been shown in preceding publications that the membrane potentials of protein solutions or gels are determined by differences in the concentration of a common ion (e.g. hydrogen ion) inside a protein solution or protein gel and an outside aqueous solution free from protein, and that the membrane potentials can be calculated with a good degree of accuracy from Donnan's equation for membrane equilibria. 2. On the basis of the theory of electrical double layers developed by Helmholtz, we are forced to assume that the cataphoretic potentials of protein particles are determined by a difference in the concentration of the two oppositely charged ions of the same electrolyte in the two strata of an electrical double layer surrounding the protein particle but situated entirely in the aqueous solution. 3. The membrane potentials of proteins agree with the cataphoretic potentials in that the sign of charge of the protein is negative on the alkaline side and positive on the acid side of the isoelectric point of the protein in both membrane potentials and cataphoretic potentials. The two types of potential of proteins disagree, especially in regard to the action of salts with trivalent and tetravalent ions on the sign of charge of the protein. While low concentrations of these salts bring about a reversal of the sign of the cataphoretic potentials of protein particles (at least in the neighborhood of the isoelectric point), the same salts can bring the membrane potentials of proteins only to zero, but call bring about no or practically no reversal of the sign of charge of the protein. Where salts seem to bring about a reversal in the membrane potential of protein solutions, the reversal is probably in reality always due to a change in the pH. 4. We may state, as a result of our experiments, that the cataphoretic migration and the cataphoretic P.D. of protein particles or of suspended particles coated with a protein are the result of two groups of forces; namely, first, forces inherent in the protein particles (these forces being linked with the membrane equilibrium between protein particles and the outside aqueous solution); and second, forces inherent entirely in the aqueous solution surrounding the protein particles. The forces inherent in the protein particles and linked with the membrane equilibrium prevail to such an extent over the forces inherent in the water, that the sense of the cataphoretic migration of protein particles is determined by the forces resulting from the membrane equilibrium.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Published in a Diamond OA journal