
doi: 10.1084/jem.105.1.1
Guinea pigs infected by intradermal injection of living toxigenic diphtheria bacilli and protected by horse antitoxic globulin, given either before or after infection, develop delayed hypersensitivity of the tuberculin type to diphtherial proteins. The highest degree of hypersensitivity is specifically directed against diphtheria toxin (or toxoid) itself, although smaller delayed skin reactions may be evoked in sensitized animals by other diphtherial proteins common to both toxigenic and non-toxigenic strains. Animals sensitized to diphtheria toxin by infection with a toxigenic strain in this way react positively to the Schick test and their serum usually contains no detectable antitoxin 2 to 3 weeks after the initial infection. Animals infected with living non-toxigenic diphtheria bacilli become sensitized to proteins common to both toxigenic and non-toxigenic strains but do not show sensitivity to toxin. The observations suggest that a minute amount of toxoid, or of toxin comparable to that which might be liberated during infection, might induce the hypersensitive state if injected in the form of a complex with excess antitoxin. This prediction is verified by the results reported in the following paper (23).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
