<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Several and various types of cells contain fine cytoplasmic filaments closely resembling the myofilaments of muscle cells (2, 18, 23, 24). In many of these cells and especially when cultured, it has been demonstrated that some of these filaments react with heavy meromyosin (HMM) in the same way as do the actin filaments of muscle cells (3, 6 7). This suggests that these filaments may be actinoid and form part of a contractile system. As fine intracytoplasmic filaments do occur in lymphatic endothelial cells (2, 14), we undertook an electron microscope investigation of their fine structure and their reaction on incubation with HMM and EDTA. We postulated that lymphatic endothelial cells possess a contractile filamentous system to which these filaments belong.
Microscopy, Electron, Animals, Newborn, Animals, Muscle, Smooth, Endothelium, Rabbits, Lung, Edetic Acid
Microscopy, Electron, Animals, Newborn, Animals, Muscle, Smooth, Endothelium, Rabbits, Lung, Edetic Acid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |