Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings annual meeting Electron Microscopy Society of America
Article . 1969 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
The Journal of Cell Biology
Article . 1971 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE FINE STRUCTURE OF COCKROACH CAMPANIFORM SENSILLA

Authors: D T, Moran; K M, Chapman; R A, Ellis;

THE FINE STRUCTURE OF COCKROACH CAMPANIFORM SENSILLA

Abstract

Campaniform sensilla on cockroach legs provide a good model system for the study of mechanoreceptive sensory transduction. This paper describes the structure of campaniform sensilla on the cockroach tibia as revealed by light- and electron-microscopy. Campaniform sensilla are proprioceptive mechanoreceptors associated with the exoskeleton. The function of each sensillum centers around a single primary sense cell, a large bipolar neuron whose 40 µ-wide cell body is available for electrophysiological investigation with intracellular microelectrodes. Its axon travels to the central nervous system; its dendrite gives rise to a modified cilium which is associated with the cuticle. The tip of the 20 µ-long dendrite contains a basal body, from which arises a 9 + 0 connecting cilium. This cilium passes through a canal in the cuticle, and expands in diameter to become the sensory process, a membrane-limited bundle of 350–1000 parallel microtubules. The tip of the sensory process is firmly attached to a thin cap of exocuticle; mechanical depression of this cap, which probably occurs during walking movements, effectively stimulates the sensillum. The hypothesis is presented that the microtubules of the sensory process play an important role in mechanoelectric transduction in cockroach campaniform sensilla.

Related Organizations
Keywords

Cell Membrane, Animals, Cilia, Dendrites, Axons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    150
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
150
Top 10%
Top 1%
Top 10%
bronze