Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1964 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

LYSOSOMAL ENZYMES OF RAT INTESTINAL MUCOSA

Authors: L, HSU; A L, TAPPEL;

LYSOSOMAL ENZYMES OF RAT INTESTINAL MUCOSA

Abstract

Six intracellular hydrolases known to be associated with lysosomes in rat liver were found in rat intestinal mucosa. The extent to which they were particulate-bound and the degree of enzyme release when the particulate fractions were suspended in hypotonic media followed the same pattern in both mucosa and liver. The specific activities of the mucosa enzymes were either comparable to or slightly smaller than those of the liver enzymes. These results suggest that the mucosa hydrolases belong to lysosome-like particles. However, differential fractionation of the mucosa indicated that the particles from the mucosa sediment at lower centrifugal forces than do those from the liver and are more heterogeneous in size, bearing a closer resemblance to kidney lysosomes. Possible physiological functions of particulate-bound digestive enzymes in intestinal mucosa are discussed.

Related Organizations
Keywords

Research, Acid Phosphatase, Alkaline Phosphatase, Kidney, Cathepsins, Galactosidases, Mitochondria, Rats, Ribonucleases, Liver, Microsomes, Intestine, Small, Intestinal Mucosa, Sulfatases, Lysosomes, Glucuronidase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Average
Top 1%
Top 10%
bronze