
The mechanisms by which axonal degeneration occurs, even in the presence of apparently normal myelin sheaths, remain unknown. In this issue, Yin et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201607099) study mutant mice in which proteolipid protein is replaced by the peripheral myelin protein P0 and describe a number of early axonal abnormalities, which together suggest that aberrant mitochondrial energy metabolism precedes axonal degeneration.
Axonal Transport, Mitochondrial Dynamics, Models, Biological, Axons, Mice, Mutant Strains, Mitochondria, Oligodendroglia, Nerve Degeneration, Commentary, Animals, Energy Metabolism, Myelin Sheath
Axonal Transport, Mitochondrial Dynamics, Models, Biological, Axons, Mice, Mutant Strains, Mitochondria, Oligodendroglia, Nerve Degeneration, Commentary, Animals, Energy Metabolism, Myelin Sheath
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
