Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ege University Insti...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Artificial Cells Blood Substitutes and Biotechnology
Article . 2001 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

ENCAPSULATION OF CATALASE AND PEG-CATALASE IN ERYTHROCYTE

Authors: Uslan, AH; Baysal, SH;

ENCAPSULATION OF CATALASE AND PEG-CATALASE IN ERYTHROCYTE

Abstract

Reactive partially reduced oxygen species such as superoxide anion (O2-), hydrogen peroxide (H2O2) and hydroxyl radical (OH) are produced in aerobically growing organisms during normal cellular respiration. To provide an effective defense against these reactive species, many aerobic organisms have evolved a multienzyme defense which includes superoxide dismutase, catalase and peroxidase. The superoxide anion may cause appreciable cellular damage by oxidizing aminoacids or by causing DNA strand breakage. Catalase was covalently immobilized on activated methoxypolyethyleneglycol-5000 and catalase and PEG-catalase were encapsulated in erythrocyte. Enzyme activity, encapsulation yield and hemograme analysis were determined for each sample. The erythrocyte shape of the samples were investigated by using phase contrast microscopy.

Country
Turkey
Related Organizations
Keywords

Drug Delivery Systems, Erythrocytes, Hematologic Tests, Drug Compounding, Humans, Microscopy, Phase-Contrast, Catalase, Enzymes, Immobilized, Polyethylene Glycols

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!