
pmid: 11800270
O-Glycosylation in many fungal species is initiated in the endoplasmic reticulum by protein mannosyltransferases (Pmt-proteins), which transfer mannose to serine or threonine residues, and it is completed by mannosyltransferases (Mnt-proteins) in the Golgi. In this review, some recent results on O-glycosylation in the human fungal pathogen Candida albicans are discussed and compared to the corresponding knowledge in the non-pathogenic yeast Saccharomyces cerevisiae. The Pmt-family in C. albicans comprises five isoforms, of which Pmt1p and Pmt6p have been studied in detail. Surprisingly, O-glycosylation mediated by Pmt-proteins is required not only for the modification of several secreted and cell-wall proteins, but also affects yeast-hyphal morphogenesis (dimorphism) and resistance to several antifungal compounds. Furthermore, Pmt1- and Pmt6p-activities maximize adherence to host cells and determine or contribute to virulence in models of systemic infection. Thus, O-glycosylation processes directly and/or indirectly affect several virulence traits of C. albicans and can be considered as potential antifungal targets.
Threonine, Antifungal Agents, Glycosylation, Virulence, Golgi Apparatus, Endoplasmic Reticulum, Mannosyltransferases, Isoenzymes, Candida albicans, Serine, Mannose
Threonine, Antifungal Agents, Glycosylation, Virulence, Golgi Apparatus, Endoplasmic Reticulum, Mannosyltransferases, Isoenzymes, Candida albicans, Serine, Mannose
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
