Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleus
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleus
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleus
Article . 2019
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Defining the epichromatin epitope

Authors: Travis J. Gould; Katalin Tóth; Norbert Mücke; Jörg Langowski; Alexandra S. Hakusui; Ada L. Olins; Donald E. Olins;

Defining the epichromatin epitope

Abstract

Epichromatin is identified by immunostaining fixed and permeabilized cells with particular bivalent anti-nucleosome antibodies (mAbs PL2-6 and 1H6). During interphase, epichromatin resides adjacent to the inner nuclear membrane; during mitosis, at the outer surface of mitotic chromosomes. By STED (stimulated emission depletion) microscopy, PL2-6 stained interphase epichromatin is ∼76 nm thick and quite uniform; mitotic epichromatin is more variable in thickness, exhibiting a "wrinkled" surface with an average thickness of ∼78 nm. Co-immunostaining with anti-Ki-67 demonstrates Ki-67 deposition between the PL2-6 "ridges" of mitotic epichromatin. Monovalent papain-derived Fab fragments of PL2-6 yield a strikingly different punctate "chromomeric" immunostaining pattern throughout interphase nuclei and along mitotic chromosome arms. Evidence from electrophoretic mobility shift assay (EMSA) and from analytical ultracentrifugation characterize the Fab/mononucleosome complex, supporting the concept that there are two binding sites per nucleosome. The peptide sequence of the Hv3 region (heavy chain variable region 3) of the PL2-6 antibody binding site strongly resembles other nucleosome acidic patch binding proteins (especially, LANA and CENPC), supporting that the nucleosome acidic patch is included within the epichromatin epitope. It is speculated that the interphase epichromatin epitope is "exposed" with favorable geometric arrangements for binding bivalent PL2-6 at the surface chromatin; whereas, the epitope is "hidden" within internal chromatin. Furthermore, it is suggested that the "exposed" nucleosome surface of mitotic epichromatin may play a role in post-mitotic nuclear envelope reformation.

Keywords

Models, Molecular, Chromatin, Cell Line, Nucleosomes, Epitopes, Chromosomes, Human, Humans, Amino Acid Sequence, Peptides, Interphase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
gold