
pmid: 22880824
Patterns of contact in social behaviour and seasonality due to environmental influences often affect the spread and persistence of diseases. Models of epidemics with seasonality and patterns in the contact rate include time-periodic coefficients, making the systems nonautonomous. No general method exists for calculating the basic reproduction number, the threshold for disease extinction, in nonautonomous epidemic models. However, for some epidemic models with periodic coefficients and constant population size, the time-averaged basic reproduction number has been shown to be a threshold for disease extinction. We extend these results by showing that the time-averaged basic reproduction number is a threshold for disease extinction when the population demographics are periodic. The results are shown to hold in epidemic models with periodic demographics that include temporary immunity, isolation, and multiple strains.
Death, Periodicity, Population Dynamics, Basic Reproduction Number, Immunity, Parturition, Humans, Seasons, Models, Biological, Demography
Death, Periodicity, Population Dynamics, Basic Reproduction Number, Immunity, Parturition, Humans, Seasons, Models, Biological, Demography
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
