
The parameters of many physical processes are unknown and have to be inferred from experimental data. The corresponding parameter estimation problem is often solved using iterative methods such as steepest descent methods combined with trust regions. For a few problem classes also continuous analogues of iterative methods are available. In this work, we expand the application of continuous analogues to function spaces and consider PDE (partial differential equation)-constrained optimization problems. We derive a class of continuous analogues, here coupled ODE (ordinary differential equation)-PDE models, and prove their convergence to the optimum under mild assumptions. We establish sufficient bounds for local stability and convergence for the tuning parameter of this class of continuous analogues, the retraction parameter. To evaluate the continuous analogues, we study the parameter estimation for a model of gradient formation in biological tissues. We observe good convergence properties, indicating that the continuous analogues are an interesting alternative to state-of-the-art iterative optimization methods.
35k57 ; 37n40 ; 49n45 ; 93d20 ; Partial Differential Equations ; Continuous Analogues ; Mathematical Biology ; Optimization ; Steady State, Original Articles
35k57 ; 37n40 ; 49n45 ; 93d20 ; Partial Differential Equations ; Continuous Analogues ; Mathematical Biology ; Optimization ; Steady State, Original Articles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
