<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plastocyanin is a copper (Cu)-requiring protein that functions in photosynthetic electron transport in the thylakoid lumen of plants. To allow plastocyanin maturation, Cu must first be transported into the chloroplast stroma by means of the PAA1/HMA6 transporter and then into the thylakoid lumen by the PAA2/HMA8 transporter. Recent evidence indicated that the chloroplast regulates Cu transport into the thylakoids via Clp protease-mediated turnover of PAA2/HMA8. Here we present further genetic evidence that this regulatory mechanism for the adjustment of intra-cellular Cu distribution depends on stromal Cu levels. A key transcription factor mediating Cu homeostasis in plants is SQUAMOSA promoter binding protein-like7 (SPL7). SPL7 transcriptionally regulates Cu homeostasis when the nutrient becomes limiting by up-regulating expression of Cu importers at the cell membrane, and down-regulating expression of seemingly non-essential cuproproteins. It was proposed that this latter mechanism favors Cu delivery to the chloroplast. We propose a 2-tiered system which functions to control plant leaf Cu homeostasis: SPL7 dependent transcriptional regulation of cuproproteins, and PAA2/HMA8 turnover by the Clp system, which is independent on SPL7.
Adenosine Triphosphatases, Arabidopsis Proteins, Arabidopsis, Biological Transport, Models, Biological, Article Addendum, Evolution, Molecular, Chloroplast Proteins, Homeostasis, Copper, Molecular Chaperones
Adenosine Triphosphatases, Arabidopsis Proteins, Arabidopsis, Biological Transport, Models, Biological, Article Addendum, Evolution, Molecular, Chloroplast Proteins, Homeostasis, Copper, Molecular Chaperones
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |