Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanics of Advanced Materials and Structures
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computation of Energy Release Rate and Mode Separation in Delaminated Composite Plates by Using Plate and Interface Variables

Authors: BRUNO, Domenico; GRECO, Fabrizio; LONETTI, Paolo;

Computation of Energy Release Rate and Mode Separation in Delaminated Composite Plates by Using Plate and Interface Variables

Abstract

Abstract A model for analyzing mixed-mode delamination problems in laminated composite plates under general loading conditions is studied. The first-order shear deformable laminated plate theory and the interface methodology, which in turn is based on fracture mechanics, are adopted. The laminate is modeled as an assembly of laminated plate and interface layers in the thickness direction. When the limit case of interface stiffness coefficients approaching infinity is considered, a perfect adhesion between plate models is simulated. On the other hand, delamination between sublaminates is taken into account by assuming zero values for interface stiffnesses. Lagrange and penalty methods are adopted to simulate connections between plate elements. By using a variational approach and the virtual crack closure concept, expressions for total energy release rate and its mode components along the delamination front are obtained, in terms of both interface variables and plate stress resultant discontinuities. These ...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!