Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electromagnetic Biol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electromagnetic Biology and Medicine
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electromagnetic Biology and Medicine
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Warburg effect—damping of electromagnetic oscillations

Authors: Jiří Pokorný; Jan Pokorný; F. Borodavka;

Warburg effect—damping of electromagnetic oscillations

Abstract

Mitochondrial dysfunction is a central defect in cells creating the Warburg and reverse Warburg effect cancers. However, the link between mitochondrial dysfunction and cancer has not yet been clearly explained. Decrease of mitochondrial oxidative energy production to about 50 % in comparison with healthy cells may be caused by inhibition of pyruvate transfer into mitochondrial matrix and/or disturbed H+ ion transfer across inner mitochondrial membrane into cytosol. Lowering of the inner membrane potential and shifting of the working point of mitochondria to high values of pH above an intermediate point causes reorganization of the ordered water layer at the mitochondrial membrane. The reorganized ordered water layers at high pH values release electrons which are transferred to the cytosol rim of the layer. The electrons damp electromagnetic activity of Warburg effect cancer cells or fibroblasts associated with reverse Warburg effect cancer cells leading to lowered electromagnetic activity, disturbed coherence, increased frequency of oscillations and decreased level of biological functions. In reverse Warburg effect cancers, associated fibroblasts supply energy-rich metabolites to the cancer cell resulting in increased power of electromagnetic field, fluctuations due to shift of oscillations to an unstable nonlinear region, decreased frequency and loss of coherence.

Related Organizations
Keywords

Electromagnetic Fields, Neoplasms, Oscillometry, Humans, Fibroblasts, Hydrogen-Ion Concentration, Cells, Cultured, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
hybrid