Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Natural and Mixed Ventilation Design via CFD and Architectural Modelling

Authors: Aleksandar Marjanovic; Marija Todorović; Olivera Ećim; Ivan Ivan Randjelovic;

Natural and Mixed Ventilation Design via CFD and Architectural Modelling

Abstract

AbstractNumerical simulations and computational fluid dynamics can be usefully integrated with architectural modelling to provide designers with a powerful single CFD based architectural modelling and design framework. This framework can be interfaced with building thermal performance modelling thus further integrating the full thermal and flow domains within architectural modelling. CFD analysis is generally restricted to the building’s environment flows or indoor single rooms and flow in spaces. In addition the designer must supply boundary conditions in the form of the external and internal building envelope/wall surface conditions. In the case of natural and mixed ventilation, this presents a fundamental problem since the outdoor and indoor boundary conditions are dynamic, inter-related and interactive via the building’s architecture. Furthermore they are dependent on external weather conditions, the indoor environment, controls and related heat gains. Therefore, in this study the boundary conditions ...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!