
Bone is a complex organ possessing both physicomechanical and bioelectrochemical properties. In the view of Wolff's Law, bone can respond to mechanical loading and is subsequently reinforced in the areas of stress. Piezoelectricity is one of several mechanical responses of the bone matrix that allows osteocytes, osteoblasts, osteoclasts, and osteoprogenitors to react to changes in their environment. The present review details how osteocytes convert external mechanical stimuli into internal bioelectrical signals and the induction of intercellular cytokines from the standpoint of piezoelectricity. In addition, this review introduces piezoelectric and triboelectric materials used as self-powered electrical generators to promote osteogenic proliferation and differentiation due to their electromechanical properties, which could promote the development of promising applications in tissue engineering and bone regeneration.
piezoelectricity, Focus on Nanogenerators, nanogenerator, TA401-492, Materials of engineering and construction. Mechanics of materials, bone remodeling, TP248.13-248.65, osteogenesis, Biotechnology
piezoelectricity, Focus on Nanogenerators, nanogenerator, TA401-492, Materials of engineering and construction. Mechanics of materials, bone remodeling, TP248.13-248.65, osteogenesis, Biotechnology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 82 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
