
pmid: 33439043
The main objective of this study was to investigate the influence of implant geometrical characteristics: diameter, length and thread's pitch, on stress distribution around dental prosthesis. A set of numerical simulations using FEM were conducted and responses surfaces were generated. With the aim of optimizing the equivalent stresses responses; desirability function approach was adopted to solve this multi-objective problem. Results showed that implant diameter had most significant influence on generated stresses and high concentration of stresses were identified in the lower part of the implant. This study is helpful in choosing the optimal dental implant for clinical application.
Dental Implants, Dental Stress Analysis, Dental Prosthesis, Dental Prosthesis Design, Finite Element Analysis, Humans, Computer Simulation, Stress, Mechanical, Biomechanical Phenomena
Dental Implants, Dental Stress Analysis, Dental Prosthesis, Dental Prosthesis Design, Finite Element Analysis, Humans, Computer Simulation, Stress, Mechanical, Biomechanical Phenomena
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
