Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Methods in ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Driving a musculoskeletal model with inertial and magnetic measurement units

Authors: Koning, B.H.W.; van der Krogt, M.M.; Baten, C.T.M.; Koopman, B.F.J.M.;

Driving a musculoskeletal model with inertial and magnetic measurement units

Abstract

We developed and evaluated a new kinematic driver for musculoskeletal models using ambulatory inertial and magnetic measurement units (IMMUs). The new driver uses the orientation estimates based on sensor fusion of each individual IMMU and benefits from two important properties of musculoskeletal models. First, these models contain more complex, anatomical, kinematic models than those currently used for sensor fusion of multiple IMMUs and are continuously improved. Second, they allow movement between segment and measured sensor. For three different tasks, the new IMMU driver, (optical) marker drivers and a combination of both were used to reconstruct the motion. Maximal root mean square (RMS) joint angle differences with respect to the silver standard (combined IMMU/marker drivers) were found for the hip joint; 4°, 2° and 5° during squat, gait and slideboard tasks for IMMU-driven reconstructions, compared with 6°, 5° and 5° for marker-driven reconstructions, respectively. The measured angular velocities corresponded best to the IMMU-driven reconstructions, with a maximal RMS difference of 66°/s, compared with 108°/s and 91°/s for marker-driven reconstructions and silver standard. However, large oscillations in global accelerations occurred during IMMU-driven reconstructions resulting in a maximal RMS difference with respect to measured acceleration of 23 m/s2, compared with 9 m/s2 for reconstructions that included marker drivers. The new driver facilitates direct implementation of IMMU-based orientation estimates in currently available biomechanical models. As such, it can help in the rapid expansion of biomechanical analysis based on outdoor measurements.

Keywords

IR-92464, METIS-306300

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!