Views provided by UsageCounts
handle: 10261/293911
The rotation of our planet results in regular changes in environmental cues such as daylength and temperature, and organisms have evolved a molecular oscillator that allows them to anticipate these changes and adapt their development accordingly. In many plants, the transition from vegetative to reproductive growth is controlled by photoperiod, which synchronises flowering with favourable seasons of the year. Here, we describe the notable progress that has been made in identifying the molecular mechanisms that measure daylength and control of flowering time in Arabidopsis , a long day (LD) plant, and in rice, a short day (SD) plant. Although the components of the Arabidopsis regulatory network seem to be conserved in other species, the difference in the function of particular genes may contribute to the reverse response to daylength observed between LD and SD plants. We also highlight the recent advances in understanding the regulatory mechanisms that underlie other developmental transitions controlled by photoperiod, including tuberisation and the onset of dormancy in the buds of perennial plants. © 2006 Taylor & Francis.
Photoreceptors, Flowering response, Photoperiodism, Daylength, Circadian clock
Photoreceptors, Flowering response, Photoperiodism, Daylength, Circadian clock
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 28 |

Views provided by UsageCounts