Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-barrier hydrogen bonds in proteins

Authors: M. V. Hosur; R. Chitra; Samarth Hegde; R. R. Choudhury; Amit Das; R. V. Hosur;

Low-barrier hydrogen bonds in proteins

Abstract

Hydrogen bonding interactions are one of the most important chemical interactions among materials, especially biological materials, which help confer specificity, which is crucial for their efficient functioning. Recently, low-barrier hydrogen bonds (LBHBs) have been proposed to play a critical role in enzyme catalysis. In this review, tools to identify LBHBs are described, along with analyses of neutron crystal structures of small molecules to identify geometric parameters characteristic of LBHBs, which are assumed to be characterized by dynamic disorder along the hydrogen bond (H-bond) of the bonding hydrogen atom. The analysis of protein structures determined by neutron diffraction indicates that LBHBs are found to occur in both active site and non-active site regions of a protein. Moreover, very short H-bonds are observed in the vicinity of folding cores identified through nuclear magnetic resonance studies on two proteins, SUMO-1 and HIV-1 protease. This observation suggests that LBHBs may also be im...

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!