Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Dynamics Simulation of Colchicinoids

Authors: Asim K. Bothra; Sabita Roy; Chaitali Mukhopadhyay; Bhabatarak Bhattacharyya;

Molecular Dynamics Simulation of Colchicinoids

Abstract

Colchicine, a tricyclic alkaloid, has a remarkable range of biological activities. It binds with tubulin and prevents the formation of microtubules. This compound consists of a six membered aromatic ring (A ring), a seven membered troponoid ring (C ring) and another seven membered aliphatic ring (B ring). Using molecular mechanics and molecular dynamics simulations as tools, conformational analysis of colchicine and its several important analogs were done. Molecular mechanics studies show that conformational space of these molecules have one low energy region. Taking the low energy minima as the starting conformation, molecular dynamics simulation for 100 pico seconds is done for each of the analogs and molecular dynamics simulation in solution is done for three representative compounds colchicine,isocolchicine and A-C compound. Internal coordinate trajectories show that the value of the dihedral angle C9-C7-C1-C14 (phi), (C7-C1 bond connects the A and C ring), is within 40 degrees to 50 degrees for all the compounds with fluctuations less than 15 degrees. These calculations indicate that there is an overall similarity in the dynamically averaged structure of all the drugs. The A ring and B ring of the compounds are more or less rigid. The C ring is somewhat flexible, the average conformation and motional properties show overall similarity. The potential energy curve and dynamics behaviour of colchicine and isocolchicine suggests that the difference in binding property of colchine and isocolchicine may originate from the positional difference of carbonyl oxygen and methoxy group of C ring, which is the only difference in the structures of the two compounds and this has no effect on the motional property and average conformations of these two compounds. From our study it is proposed that the movements occuring at various positions of the drug molecules are significantly correlated. It is suggested that such correlated motion may play an important role in the biological property of these compounds.

Related Organizations
Keywords

Solutions, 4-Chloro-7-nitrobenzofurazan, Molecular Structure, Demecolcine, Computer Simulation, Colchicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?