
For a simple signed graph $G$ with the adjacency matrix $A$ and net degree matrix $D^{\pm}$, the net Laplacian matrix is $L^{\pm}=D^{\pm}-A$. We introduce a new oriented incidence matrix $N^{\pm}$ which can keep track of the sign as well as the orientation of each edge of $G$. Also $L^{\pm}=N^{\pm}(N^{\pm})^T$. Using this decomposition, we find the numbers of positive and negative spanning trees of $G$ in terms of the principal minors of $L^{\pm}$ generalizing Matrix Tree Theorem for an unsigned graph. We present similar results for the signless net Laplacian matrix $Q^{\pm}=D^{\pm}+A$ along with a combinatorial formula for its determinant.
16 pages, accepted in Linear and Multilinear Algebra
05C50, 05C22, 15B99, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
05C50, 05C22, 15B99, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
