
handle: 11588/856995
A well--known fact in Spectral Graph Theory is the existence of pairs of isospectral nonisomorphic graphs (known as PINGS). The work of A.J. Schwenk (in 1973) and of C. Godsil and B. McKay (in 1982) shed some light on the explanation of the presence of isospectral graphs, and they gave routines to construct PINGS. Here, we consider the Godsil-McKay--type routines developed for graphs, whose adjacency matrices are $(0,1)$-matrices, to the level of signed graphs, whose adjacency matrices allow the presence of $-1$'s. We show that, with suitable adaption, such routines can be successfully ported to signed graphs, and we can build pairs of cospectral switching nonisomorphic signed graphs.
13 pages, 4 figures
isospectral, Switching, 05C22, 05C50, FOS: Mathematics, adjacency spectrum, Mathematics - Combinatorics, Combinatorics (math.CO), PING, adjacency spectrum; isospectral; PING; Switching
isospectral, Switching, 05C22, 05C50, FOS: Mathematics, adjacency spectrum, Mathematics - Combinatorics, Combinatorics (math.CO), PING, adjacency spectrum; isospectral; PING; Switching
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
