Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Toxicologic Patholog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Toxicologic Pathology
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toxicogenomics in Drug Development

Authors: Jeanne Kehren; Frank Staedtler; Olivier Grenet; Salah-Dine Chibout; Nelson Guerreiro;

Toxicogenomics in Drug Development

Abstract

Toxicogenomics represents the merging of toxicology with technologies that have been developed, together with bioinformatics, to identify and quantify global gene expression changes. It represents a new paradigm in drug development and risk assessment, which promises to generate a wealth of information towards an increased understanding of the molecular mechanisms that lead to drug toxicity and efficacy, and of DNA polymorphisms responsible for individual susceptibility to toxicity. Gene expression profiling, through the use of DNA microarray and proteomic technologies will aid in establishing links between expression profiles, mode of action and traditional toxic endpoints. Such patterns of gene expression, or `molecular fingerprints' could be used as diagnostic or predictive markers of exposure, that is characteristic of a specific mechanism of induction of that toxic or efficacious effect. It is anticipated that toxicogenomics will be increasingly integrated into all phases of the drug development process particularly in mechanistic and predictive toxicology, and biomarker discovery. This review provides an overview of the expression profiling technologies applied in toxicogenomics, and discusses the promises as well as the future challenges of applying this discipline to the drug development process.

Related Organizations
Keywords

Proteomics, Gene Expression Profiling, Computational Biology, Genomics, Toxicology, Polymerase Chain Reaction, Toxicogenetics, Drug Design, Animals, Humans, Biomarkers, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Average
Top 10%
Top 10%
bronze