Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solvent Extraction Chemistry and Kinetics of Zirconium

Authors: R. G. Yates; S. M. Robinson; J. C. Mailen; D. E. Eorner; N. Pih; S. E. Dorris;

Solvent Extraction Chemistry and Kinetics of Zirconium

Abstract

Abstract The solvent extraction behavior of zirconium in the HN03-tributyl phosphate (TBP) system can be explained based on the existence of four principal aqueous species, Zr4+, ZrOH3+, Zr3(OH)8+ 4, and oxo-polymers. The Zr4+ and ZrOH3+ species are extractable and are in equilibrium with inextractable Zr3(OH)8+ 4. The oxo-polymers are formed by heat, are-inextractable, and are not: in equilibrium with the other species. The aqueous equilibria and their equilibrium quotients have been previously determined. In the present study, these equilibria were used along with both tracer and macro zirconium concentrations (oxo-polymers excluded by extraction and back scrubbing) to determine the distribution equilibrium constants for both the Zr4+ and ZrOH3+ ions. The four equilibrium constants give excellent fits to both tracer and macro-zirconium distribution data. The concentrations of the extractable zirconium species which are calculated from the equilibria have been used to begin examining the extraction kinet...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!