
Der Gegenstand dieser Arbeit sind spezielle Polynome, die sich in der Tafel der Gegenbauerschen Polynome entlang der abnehmenden Diagonalen bilden. Dabei werden einige Eigenschaften dieser Polynome diskutiert wie z.B. expliziter Ausdruck, erzeugende Funktion, rekurrenter Ausdruck, Differentialgleichung u.s.w. Ebenfalls werden einige spezielle bzw. verallgemeinerte Fälle eingeführt wie Polynome von Legendre, Chebyshev, Pincherle, Humbert, Byrd und Kinney.
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), generalized Humbert, Gegenbauer polynomials, Gegenbauer polynomial array, polynomial, Exact enumeration problems, generating functions, Fibonacci and Lucas numbers and polynomials and generalizations, Recurrences, descending diagonals in Pascal-type array, Chebyshev polynomials
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), generalized Humbert, Gegenbauer polynomials, Gegenbauer polynomial array, polynomial, Exact enumeration problems, generating functions, Fibonacci and Lucas numbers and polynomials and generalizations, Recurrences, descending diagonals in Pascal-type array, Chebyshev polynomials
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
