Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Systematic and Appli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Systematic and Applied Microbiology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Catabolite Repression in Enterococcus faecalis

Authors: Mary C, Rea; Timothy M, Cogan;

Catabolite Repression in Enterococcus faecalis

Abstract

Metabolism of citrate, pyruvate and sugars by Enterococcus faecalis E-239 and JH2-2 and an isogenic, catabolite derepressed mutant of JH2-2, strain CL4, was investigated. The growth rates of E. faecalis E-239 on citrate and pyruvate were 0.58 and 0.63 h(-1), respectively, indicating that both acids were used as energy sources. Fructose and glucose prevented the metabolism of citrate until all the glucose or fructose had been metabolised. Diauxie growth was not observed but growth on glucose and fructose was much faster than on citrate. In contrast, citrate was co-metabolized with galactose or sucrose and pyruvate with glucose. When glucose was added to cells growing on citrate, glucose metabolism began immediately but inhibition of citrate utilisation did not begin for approximately 1.5 h. Growth rates of E. faecalis JH2-2 and its isogenic, catabolite derepressed mutant, strain CL4, on citrate, were 0.41 and 0.36 h(-1), respectively. The catabolite derepressed mutant was able to co-metabolise citrate and glucose at all concentrations of glucose tested (3-25 mM), while its parent, could only metabolise citrate once all the glucose had been consumed. In strains JH2-2 and E-239, the growth rate on citrate decreased as the glucose concentration increased and, in 25 mM glucose, consumption of citrate was inhibited for several hours after glucose had been consumed. These results indicate that catabolite repression by glucose and fructose occurs in enterococci.

Keywords

Feedback, Physiological, Industrial Microbiology, Cheese, Pyruvic Acid, Carbohydrates, Enterococcus faecalis, Carbohydrate Metabolism, Citric Acid, Culture Media

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!