
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Sirtuins are a family of NAD(+)-dependent protein deacetylases/deacylases that dynamically regulate transcription, metabolism, and cellular stress response. Their general positive link with improved health span in mammals, potential regulation of pathways mediated by caloric restriction, and growing links to human disease have spurred interest in therapeutics that target their functions. Here, we review the current understanding of the chemistry of catalysis, biological targets, and endogenous regulation of sirtuin activity. We discuss recent efforts to generate small-molecule regulators of sirtuin activity.
Small Molecule Libraries, Acylation, Biocatalysis, Animals, Humans, Sirtuins, Substrate Specificity
Small Molecule Libraries, Acylation, Biocatalysis, Animals, Humans, Sirtuins, Substrate Specificity
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 210 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
