<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17504756
Cripto is a membrane-bound co-receptor for Nodal, a member of the transforming growth factor-beta superfamily. Mouse embryos lacking either Cripto or Nodal have the same lethal phenotype at embryonic day 7.5. Previous studies suggest that O-fucosylation of the epidermal growth factor-like (EGF) repeat in Cripto is essential for the facilitation of Nodal signaling. Substitution of Ala for the Thr to which O-fucose is attached led to functional inactivation of both human and mouse Cripto. However, embryos null for protein O-fucosyltransferase 1, the enzyme that adds O-fucose to EGF repeats, do not exhibit a Cripto null phenotype and die at about embryonic day 9.5. This suggested that the loss of O-fucose from the EGF repeat may not have led to the inactivation of Cripto in previous studies. Here we investigate this hypothesis and show the following: 1) protein O-fucosyltransferase 1 is indeed the enzyme that adds O-fucose to Cripto; 2) Pofut1(-/-) embryonic stem cells behave the same as Pofut1(+/+) embryonic stem cells in a Nodal signaling assay; 3) Pofut1(-/-) and Pofut1(+/+) embryoid bodies are indistinguishable in their ability to differentiate into cardiomyocytes; and 4) none of 10 amino acid substitutions at Thr(72), including Ser which acquires O-fucose, rescues the activity of mouse Cripto in Nodal signaling assays. Therefore, the Thr to which O-fucose is linked in Cripto plays a key functional role, but O-fucose at Thr(72) is not required for Cripto to function in cell-based signaling assays or in vivo. By contrast, we show that O-fucose, and not the Thr to which it is attached, is required in the ligand-binding domain of Notch1 for Notch1 signaling.
Membrane Glycoproteins, Epidermal Growth Factor, Nodal Protein, Mutation, Missense, Cell Differentiation, Fucosyltransferases, GPI-Linked Proteins, Cell Line, Neoplasm Proteins, Mice, Amino Acid Substitution, Animals, Humans, Intercellular Signaling Peptides and Proteins, Myocytes, Cardiac, Receptor, Notch1, Embryonic Stem Cells, Fucose, Protein Modification, Translational, Signal Transduction
Membrane Glycoproteins, Epidermal Growth Factor, Nodal Protein, Mutation, Missense, Cell Differentiation, Fucosyltransferases, GPI-Linked Proteins, Cell Line, Neoplasm Proteins, Mice, Amino Acid Substitution, Animals, Humans, Intercellular Signaling Peptides and Proteins, Myocytes, Cardiac, Receptor, Notch1, Embryonic Stem Cells, Fucose, Protein Modification, Translational, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |