
pmid: 17351263
The hairpin ribozyme is a small catalytic motif found in plant satellite RNAs where it catalyzes a reversible self-cleavage reaction during processing of replication intermediates. Crystallographic studies of hairpin ribozymes have provided high resolution views of the RNA functional groups that comprise the active site and stimulated biochemical studies that probed the contributions of nucleobase functional groups to catalytic chemistry. The dramatic loss of activity that results from perturbation of active site architecture points to the importance of positioning and orientation in catalytic rate acceleration. The current study focuses on the network of noncovalent interactions that align nucleophilic and leaving group oxygens in the orientation required for the S(N)2-type reaction mechanism and orient the active site nucleobases near the reactive phosphate to facilitate catalytic chemistry. Nucleotide modifications that alter or eliminate individual hydrogen bonding partners had different effects on the activation barrier to catalysis, the stability of ribozyme complexes in the ground state, and the internal equilibrium between cleavage and ligation of bound products. Furthermore, substitution of hydrogen bond donors and acceptors with seemingly equivalent pairs sometimes had very different functional consequences. These biochemical analyses augment high resolution structural information to provide insights into the functional significance of active site architecture.
Models, Molecular, RNA, Plant, Nucleic Acid Conformation, Hydrogen Bonding, RNA, Catalytic, Crystallography, X-Ray, Databases, Protein
Models, Molecular, RNA, Plant, Nucleic Acid Conformation, Hydrogen Bonding, RNA, Catalytic, Crystallography, X-Ray, Databases, Protein
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
