<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 16963437
Jasmonic acid (JA) is a lipid-derived signal that regulates a wide variety of developmental and defense-related processes in higher plants. JA is synthesized from linolenic acid via an enzymatic pathway that initiates in the plastid and terminates in peroxisomes. The C18 JA precursor 12-oxo-phytodienoic acid (OPDA) is converted in the peroxisome to 3-oxo-2-(2'-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8:0), which subsequently undergoes three rounds of beta-oxidation to yield JA. Although most JA biosynthetic enzymes have been identified, several key steps in the pathway remain to be elucidated. To address this knowledge gap, we employed co-expression analysis to identify genes that are coordinately regulated with known JA biosynthetic components in Arabidopsis. Among the candidate genes uncovered by this approach was a 4-coumarate-CoA ligase-like member of the acyl-activating enzyme (AAE) gene family, which we have named OPC-8:0 CoA Ligase1 (OPCL1). In response to wounding, opcl1 null mutants exhibited reduced levels of JA and hyperaccumulation of OPC-8:0. Recombinant OPCL1 was active against both OPDA and OPC-8:0, as well as medium-to-long straight-chain fatty acids. Subcellular localization studies with green fluorescent protein-tagged OPCL1 showed that the protein is targeted to peroxisomes. These findings establish a physiological role for OPCL1 in the activation of JA biosynthetic precursors in leaf peroxisomes, and further indicate that OPC-8:0 is a physiological substrate for the activation step. The results also demonstrate the utility of co-expression analysis for identification of factors that contribute to jasmonate homeostasis.
570, Arabidopsis Proteins, Acylation, Molecular Sequence Data, Arabidopsis, Cyclopentanes, Plant Leaves, Gene Expression Regulation, Plant, RNA, Plant, Mutation, Peroxisomes, Oxylipins, Phylogeny, Signal Transduction
570, Arabidopsis Proteins, Acylation, Molecular Sequence Data, Arabidopsis, Cyclopentanes, Plant Leaves, Gene Expression Regulation, Plant, RNA, Plant, Mutation, Peroxisomes, Oxylipins, Phylogeny, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 163 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |