Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Nuclear DNA Helicase II (RNA Helicase A) Interacts with Werner Syndrome Helicase and Stimulates Its Exonuclease Activity

Authors: Jana, Friedemann; Frank, Grosse; Suisheng, Zhang;

Nuclear DNA Helicase II (RNA Helicase A) Interacts with Werner Syndrome Helicase and Stimulates Its Exonuclease Activity

Abstract

Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A, is involved in transcription and RNA processing. Here, we report that NDH II interacts with the Werner syndrome helicase WRN, an enzyme associated with premature aging and predisposition to tumorigenesis. NDH II was co-purified with WRN, DNA polymerase delta, and replication protein A (70 kDa) during several steps of conventional column chromatography. Co-immunoprecipitations revealed an association between NDH II, WRN, and polymerase delta. We demonstrate a direct protein-protein interaction between WRN and NDH II that is mediated by the N-terminal double-strand RNA-binding domain II and C-terminal RGG box of NDH II and the N-terminal exonuclease domain of WRN. WRN inhibited the DNA-dependent NTPase and DNA helicase activities of NDH II. On the other hand, the 3' --> 5' exonuclease activity of WRN was increased by the presence of NDH II. NDH II directly stimulated the exonuclease domain of WRN, whereas the exonuclease domain of WRN suppressed the DNA-dependent (but not RNA-dependent) ATPase activity of NDH II. These results suggest that the double-strand RNA-binding domain II and RGG box of NDH II together form a protein-protein interaction surface that contacts the exonuclease domain of WRN. Furthermore, NDH II enhanced the degradation of D-loop DNA by the WRN exonuclease. Taken together, these results suggest that NDH II plays a role in promoting the DNA processing function of WRN, which in turn might be necessary for maintaining genomic stability.

Keywords

Werner Syndrome Helicase, RecQ Helicases, Recombinant Fusion Proteins, DNA Helicases, Membrane Proteins, DNA, Neoplasm Proteins, Protein Structure, Tertiary, DEAD-box RNA Helicases, Enzyme Activation, Exodeoxyribonucleases, Animals, Humans, Werner Syndrome, DNA Polymerase III, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
gold