Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iso-coenzyme A

Authors: Kristi L, Burns; Leslie T, Gelbaum; M Cameron, Sullards; David E, Bostwick; Sheldon W, May;
Abstract

Iso-coenzyme A is an isomer of coenzyme A in which the monophosphate is attached to the 2'-carbon of the ribose ring. Although iso-CoA was first reported in 1959 (Moffatt, J. G., and Khorana, H. G. (1959) J. Am. Chem. Soc. 81, 1265-1265) to be a by-product of the chemical synthesis of CoA, relatively little attention has been focused on iso-CoA or on acyl-iso-CoA compounds in the literature. We now report structural characterizations of iso-CoA, acetyl-iso-CoA, acetoacetyl-iso-CoA, and beta-hydroxybutyryl-iso-CoA using mass spectrometry (MS), tandem MS, and homonuclear and heteronuclear NMR analyses. Although the 2'-phosphate isomer of malonyl-CoA was recently identified in commercial samples, previous characterizations of iso-CoA itself have been based on chromatographic analyses, which ultimately rest on comparisons with the degradation products of CoA and NADPH or have been based on assumptions regarding enzyme specificity. We describe a high performance liquid chromatography methodology for separating the isomers of several CoA-containing compounds. We also report here the first examples of iso-CoA-containing compounds acting as substrates in enzymatic acyl transfer reactions. Finally, we describe a simple synthesis of iso-CoA from CoA, which utilizes beta-cyclodextrin to produce iso-CoA with high regioselectivity, and we demonstrate a plausible mechanism that accounts for the existence of iso-CoA isomers in commercial preparations of CoA-containing compounds. We anticipate that these results will provide methodology and impetus for investigating iso-CoA compounds as potential pseudo-substrates or inhibitors of the >350 known CoA-utilizing enzymes.

Related Organizations
Keywords

Spectrometry, Mass, Electrospray Ionization, Magnetic Resonance Spectroscopy, Time Factors, beta-Cyclodextrins, Mass Spectrometry, Substrate Specificity, Fungal Proteins, Models, Chemical, Acetyl Coenzyme A, Protein Isoforms, Coenzyme A, Disulfides, Chromatography, High Pressure Liquid, NADP

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
gold