Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proteolysis of Non-phosphorylated and Phosphorylated Tau by Thrombin

Authors: Tetsuaki, Arai; Jian-Ping, Guo; Patrick L, McGeer;

Proteolysis of Non-phosphorylated and Phosphorylated Tau by Thrombin

Abstract

The microtubule-associated protein tau aggregates intracellularly by unknown mechanisms in Alzheimer's disease and other tauopathies. A contributing factor may be a failure to break down free cytosolic tau, thus creating a surplus for aggregation, although the proteases that degrade tau in brain remain unknown. To address this issue, we prepared cytosolic fractions from five normal human brains and from perfused rat brains and incubated them with or without protease inhibitors. D-Phenylalanyl-L-prolylarginyl chloromethyl ketone, a thrombin-specific inhibitor, prevented tau breakdown in these fractions, suggesting that thrombin is a brain protease that processes tau. We next exposed human recombinant tau to purified human thrombin and analyzed the fragments by N-terminal sequencing. We found that thrombin proteolyzed tau at multiple arginine and lysine sites. These include Arg(155)-Gly(156), Arg(209)-Ser(210), Arg(230)-Thr(231), Lys(257)-Ser(258), and Lys(340)-Ser(341) (numbering according to the longest human tau isoform). Temporally, the initial cleavage occurred at the Arg(155)-Gly(156) bond. Proteolysis of the resultant C-terminal tau fragment then proceeded bidirectionally. When tau was phosphorylated by glycogen synthase kinase-3beta, most of these proteolytic processes were inhibited, except for the first cleavage at the Arg(155)-Gly(156) bond. Furthermore, paired helical filament tau prepared from Alzheimer's disease brain was more resistant to thrombin proteolysis than following dephosphorylation by alkaline phosphatase. The results suggest a possible role for thrombin in proteolysis of tau under physiological and/or pathological conditions in human brains. They are consistent with the hypothesis that phosphorylation of tau inhibits proteolysis by thrombin or other endogenous proteases, leading to aggregation of tau into insoluble fibrils.

Related Organizations
Keywords

Glycogen Synthase Kinase 3 beta, Tissue Extracts, Molecular Sequence Data, Thrombin, Brain, tau Proteins, Rats, Perfusion, Glycogen Synthase Kinase 3, Solubility, Animals, Humans, Amino Acid Sequence, Phosphorylation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
gold