Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phosphorylation of DNA Topoisomerase I by the c-Abl Tyrosine Kinase Confers Camptothecin Sensitivity

Authors: Donghui, Yu; Ehsan, Khan; Md Abdul, Khaleque; James, Lee; Gary, Laco; Glenda, Kohlhagen; Surender, Kharbanda; +3 Authors

Phosphorylation of DNA Topoisomerase I by the c-Abl Tyrosine Kinase Confers Camptothecin Sensitivity

Abstract

DNA topoisomerase I (topo I) is involved in the regulation of DNA supercoiling, gene transcription, recombination, and DNA repair. The anticancer agent camptothecin specifically targets topo I. The mechanisms responsible for the regulation of topo I in cells, however, are not known. This study demonstrates that c-Abl-dependent phosphorylation up-regulates topo I activity. The c-Abl SH3 domain bound directly to the N-terminal region of topo I. The results demonstrate that c-Abl phosphorylated topo I at Tyr268 in core subdomain II. c-Abl-mediated phosphorylation of topo I Tyr268 in vitro and in cells conferred activation of the topo I isomerase function. Moreover, activation of c-Abl by treatment of cells with ionizing radiation was associated with c-Abl-dependent phosphorylation of topo I and induction of topo I activity. The functional significance of the c-Abl/topo I interaction is supported by the findings that (i) mutant topo I(Y268F) exhibited loss of c-Abl-induced topo I activity, and (ii) c-Abl-/- cells were deficient in the accumulation of protein-linked DNA breaks. In addition, loss of topo I phosphorylation in c-Abl-deficient cells conferred resistance to camptothecin-induced apoptosis. These findings collectively support a model in which c-Abl-mediated phosphorylation of topo I is functionally important to topo I activity and sensitivity to topo I poisons.

Related Organizations
Keywords

Cell Nucleus, Binding Sites, Drug Resistance, Models, Biological, Enzyme Activation, src Homology Domains, Mice, DNA Topoisomerases, Type I, Animals, Humans, Camptothecin, Amino Acid Sequence, Phosphorylation, Topoisomerase I Inhibitors, Proto-Oncogene Proteins c-abl, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Average
Top 10%
gold
Related to Research communities
Cancer Research