<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 15210689
The CB1 cannabinoid receptor (CB1R) displays a significant level of ligand-independent (i.e. constitutive) activity, either when heterologously expressed in nonneuronal cells or in neurons where CB1Rs are endogenous. The present study investigates the consequences of constitutive activity on the intracellular trafficking of CB1R. When transfected in HEK-293 cells, CB1R is present at the plasma membrane, but a substantial proportion ( approximately 85%) of receptors is localized in intracellular vesicles. Detailed analysis of CB1-EGFP expressed in HEK-293 cells shows that the intracellular CB1R population is mostly of endocytic origin and that treatment with inverse agonist AM281 traps CB1R at the plasma membrane through a monensin-sensitive recycling pathway. Co-transfection with dominant positive or dominant negative mutants of the small GTPases Rab5 and Rab4, but not Rab11, profoundly modifies the steady-state and ligand-induced intracellular distribution of CB1R, indicating that constitutive endocytosis is Rab5-dependent, whereas constitutive recycling is mediated by Rab4. In conclusion, our results indicate that, due to its natural constitutive activity, CB1R permanently and constitutively cycles between plasma membrane and endosomes, leading to a predominantly intracellular localization at steady state.
Protein Transport, Receptor, Cannabinoid, CB1, Recombinant Fusion Proteins, Cell Membrane, Green Fluorescent Proteins, Humans, Endosomes, Intracellular Membranes, Cell Line, Signal Transduction
Protein Transport, Receptor, Cannabinoid, CB1, Recombinant Fusion Proteins, Cell Membrane, Green Fluorescent Proteins, Humans, Endosomes, Intracellular Membranes, Cell Line, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 208 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |