Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Endosomes, Glycosomes, and Glycosylphosphatidylinositol Catabolism in Leishmania major

Authors: Zhifeng, Zheng; Kimberly D, Butler; Rodney K, Tweten; Kojo, Mensa-Wilmot;

Endosomes, Glycosomes, and Glycosylphosphatidylinositol Catabolism in Leishmania major

Abstract

Glycosylphosphatidylinositols (GPIs) serve as membrane anchors of polysaccharides and proteins in the protozoan parasite Leishmania major. Free GPIs that are not attached to macromolecules are present in L. major as intermediates of protein-GPI and polysaccharide-GPI synthesis or as terminal glycolipids. The importance of the intracellular location of GPIs in vivo for functions of the glycolipids is not appreciated. To examine the roles of intracellular free GPI pools for attachment to polypeptide, a GPI-specific phospholipase C (GPI-PLCp) from Trypanosoma brucei was used to probe trafficking of GPI pools inside L. major. The locations of GPIs were determined, and their catabolism by GPI-PLCp was analyzed with respect to the intracellular location of the enzyme. GPIs accumulated on the endo-lysosomal system, where GPI-PLCp was also detected. A peptide motif [CS][CS]-x(0,2)-G-x(1)-C-x(2,3)-S-x(3)-L formed part of an endosome targeting signal for GPI-PLCp. Mutations of the endosome targeting motif caused GPI-PLCp to associate with glycosomes (peroxisomes). Endosomal GPI-PLCp caused a deficiency of protein-GPI in L. major, whereas glycosomal GPI-PLCp failed to produce the GPI deficiency. We surmise that (i) endo-lysosomal GPIs are important for biogenesis of GPI-anchored proteins in L. major; (ii) sequestration of GPI-PLCp to glycosomes protects free protein-GPIs from cleavage by the phospholipase. In T. brucei, protein-GPIs are concentrated at the endoplasmic reticulum, separated from GPI-PLCp. These observations support a model in which glycosome sequestration of a catabolic GPI-PLCp preserves free protein-GPIs in vivo.

Keywords

Glycosylphosphatidylinositols, Type C Phospholipases, Animals, Biological Transport, Endosomes, Protein Sorting Signals, Microbodies, Cell Compartmentation, Leishmania major

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
gold