Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trans-activators Regulating Neuronal Glucose Transporter Isoform-3 Gene Expression in Mammalian Neurons

Authors: Augustine, Rajakumar; Shanthie, Thamotharan; Nupur, Raychaudhuri; Ram K, Menon; Sherin U, Devaskar;

Trans-activators Regulating Neuronal Glucose Transporter Isoform-3 Gene Expression in Mammalian Neurons

Abstract

The murine facilitative glucose transporter isoform 3 is developmentally regulated and is predominantly expressed in neurons. By employing the primer extension assay, the transcription start site of the murine Glut 3 gene in the brain was localized to -305 bp 5' to the ATG translation start codon. Transient transfection assays in N2A neuroblasts using murine GLUT3-luciferase reporter constructs mapped enhancer activities to two regions located at -203 to -177 and -104 to -29 bp flanking a previously described repressor element (-137 to -130 bp). Dephosphorylated Sp1 and Sp3 proteins from the 1- and 21-day-old mouse brain nuclear extracts bound the repressor elements, whereas both dephosphorylated and phosphorylated cAMP-response element-binding protein (CREB) in N2A, 1- and 21-day-old mouse brain nuclear extracts bound the 5'-enhancer cis-elements (-187 to -180 bp) of the Glut 3 gene, and the Y box protein MSY-1 bound the sense strand of the -83- to -69-bp region. Sp3, CREB, and MSY-1 binding to the GLUT 3 DNA was confirmed by the chromatin immunoprecipitation assay, whereas CREB and MSY-1 interaction was detected by the co-immunoprecipitation assay. Furthermore, small interference RNA targeted at CREB in N2A cells decreased endogenous CREB concentrations, and CREB mediated GLUT 3 transcription. Thus, in the murine brain similar to the N2A cells, phosphorylated CREB and MSY-1 bound the Glut 3 gene trans-activating the expression in neurons, whereas Sp1/Sp3 bound the repressor elements. We speculate that phosphorylated CREB and Sp3 also interacted to bring about GLUT 3 expression in response to development/cell differentiation and neurotransmission.

Keywords

Cell Nucleus, Neurons, Mice, Inbred BALB C, Glucose Transporter Type 3, Monosaccharide Transport Proteins, Brain, Codon, Initiator, Cell Differentiation, Nerve Tissue Proteins, Chromatin, Cell Line, DNA-Binding Proteins, Mice, Gene Expression Regulation, Genes, Reporter, Cell Line, Tumor, Animals, Cyclic AMP Response Element-Binding Protein, Gene Deletion, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold